Fast and Radiation Hard Inorganic Scintillators for Future HEP Experiments Chen Hu, Liyuan Zhang, and Ren-Yuan Zhu HEP Crystal Laboratory, California Institute of Technology, Pasadena, CA 91125, USA

1. Introduction

Future HEP experiments at the energy and intensity frontiers require fast and ultrafast inorganic scintillators with excellent radiation hardness to face the challenges of unprecedented event rate and severe radiation environment. We report recent progress in fast and ultrafast inorganic scintillators for future HEP experiments. Examples are LYSO crystals and LuAG ceramics for an ultra-compact shashlik sampling calorimeter for the HL-LHC and the proposed FCChh, and yttrium doped BaF₂ crystals for the proposed Mu2e-II experiment. Applications for Gigahertz hard X-ray imaging will also be discussed.

Table I shows scintillation performance of fast and ultrafast inorganic scintillators. LYSO crystals and LuAG:Ce ceramics show high stopping power, high light output, short decay time and good radiation hardness against ionization dose and hadrons. Yttrium doped BaF₂ crystal shows ultrafast scintillation light with sub-ns decay time and a suppressed slow scintillation light. These inorganic scintillators are promising for future HEP experiments.

	Table I Scintillation Performance of Fast and Ultrafast Inorganic Scintillators											
YSO:Ce	LuYAP:Ce	GAGG:Ce	YAP:Ce	LuAG:Ce	LYSO:Ce	β-Ga ₂ O ₃	YAG:Yb	YAP:Yb	ZnO:Ga	BaF ₂ :Y	BaF ₂	
4.44	7.2 ^f	6.5	5.35	6.76	7.4	5.94 ^[1]	4.56	5.35	5.67	4.89	4.89	Density (g/cm ³)
2070	1930	1850	1870	2060	2050	1725	1940	1870	1975	1280	1280	Melting points (°C)
3.10	1.37	1.63	2.77	1.45	1.14	2.51	3.53	2.77	2.51	2.03	2.03	X ₀ (cm)
2.93	2.01	2.20	2.4	2.15	2.07	2.20	2.76	2.4	2.28	3.1	3.1	R _M (cm)
27.8	19.5	21.5	22.4	20.6	20.9	20.9	25.2	22.4	22.2	30.7	30.7	λ _ι (cm)
33.3	58.6	51.8	31.9	60.3	64.8	28.1	30	31.9	27.7	51.6	51.6	Z _{eff}
6.57	9.82	8.96	8.05	9.22	9.55	8.82	7.01	8.05	8.42	_6.52	6.52	dE/dX (MeV/cm)
420	385	540	370	520	420	380	350	350	380	300 220	300 220	λ _{peak} ^a (nm)
1.78	1.94	1.92	1.96	1.84	1.82	1.97	1.87	1.96	2.1	1.50	1.50	Refractive Index ^b
80	16 15	115	9 32	35 ^e 48 ^e	100	6.5 0.5	0.36 ^d	0.19 ^d	6.6 ^d	1.7 4.8	42 4.8	Normalized Light Yield ^{a,c}
24,000	10,000	34,400	12,000	25,000 ^e	30,000	2,100	110 ^d	57 ^d	2,000 ^d	2,000	13,000	Total Light yield (ph/MeV)
75	1485 36	53	191 25	820 50	40	148 <mark>6</mark>	4	1.5	<1	600 0.5	600 <mark>0.5</mark>	Decay time ^a (ns)
318	125	640	391	240	740	43	24 ^d	28 ^d	610 ^d	1200	1200	LY in 1 st ns (photons/MeV)
0.334	0.214	0.319	0.314	0.251	0.185	0.394	0.439	0.314	0.407	0.106	0.106	40 keV Att. Leng. (1/e, mm)
	1.94161510,0001485361250.214	1.92 115 34,400 53 640 0.319	1.96 9 32 12,000 191 25 391 0.314	1.84 35° 48° 25,000° 820 50 240 0.251	 1.82 100 30,000 40 740 0.185 	1.97 6.5 0.5 2,100 148 6 43 0.394	1.87 0.36 ^d 110 ^d 4 24 ^d 0.439	1.96 0.19 ^d 57 ^d 1.5 28 ^d 0.314	2.1 6.6 ^d 2,000 ^d <1 610 ^d 0.407	1.50 1.7 4.8 2,000 600 0.5 1200 0.106	1.50 42 4.8 13,000 600 0.5 1200 0.106	Refractive IndexbNormalized Light Yielda,cTotal Light yield (ph/MeV)Decay timea (ns)LY in 1st ns (photons/MeV)40 keV Att. Leng. (1/e, mm)

2. Bright, Fast and Radiation Hard LYSO:Ce and LuAG:Ce 2.1 LYSO:Ce Crystals and LuAG:Ce Ceramics

Experiment 6990, 7324 & 8051 CC = 0.95

irradiated by 800 MeV proton beam at LAN

Fig. 1 Emission weighted RIAC values as a function of integrated dose for 20 cm long LYSO crystals from various vendors. Fig. 2 The RIAC values as a function of proton fluence for LYSO crystals from various vendors.

Figs. 1, 2, and 3 show respectively the radiation induced absorption coefficient (RIAC) values as a function of (1) integrated dose, (2) proton fluence, and (3) 1 MeV equivalent neutron fluence for LYSO crystals from various vendors. We found that damage induced by protons is an order of magnitude larger than that from neutrons due to ionization energy loss in addition to displacement and nuclear breakup. These results prove that LYSO crystals from different vendors satisfy CMS BTL specification: RIAC < 3 /m after 4.8 Mrad, 2.5 x 10¹³ p/cm² and 3 x 10¹⁴ n_{ed}/cm².

Fig. 4 The RIAC values as a function of MeV equivalent neutron fluence for LYSO and BaF₂ crystals and LuAG:Ce ceramics.

proton fluence for LYSO crystals and LuAG:Ce ceramics.

Fig. 6 Light output (LO) measured in 200 and 3,000 ns gates for LuAG:Ce ceramic samples with various co-dopings.

Figs. 4 and 5 show the RIAC values as a function of (1) 1 MeV equivalent neutron fluence and (2) proton fluence for LuAG:Ce ceramics and LYSO crystals. We found that LuAG:Ce ceramics show a factor of two better radiation hardness than LYSO crystals up to 6.7×10^{15} n_{eo}/cm² and 1.2×10^{15} p/cm², so are promising for the FCC-hh. Fig. 6 shows that Ca²⁺ co-doping suppresses improves the Fast/Total (F/T) ratio to 90%.

Fig. 3 The RIAC values as a function of 1 MeV equivalent neutron fluence for LYSO crystals from various vendors.

2.2 g-Ray and Neutron Induced Readout Noise in LYSO+SiPM Packages

irradiation as a function of the dose rate with a good linearity. Figs. 11 and 12 show an excellent correlation between the F_v and F_n (top) and RIN:γ and RIN:n (bottom) vs. the LO in 200 ns gate, and the RIN:γ and RIN:n values of about 34 and 7 keV respectively, much less than the 4.2 MeV signal expected from minimum ionization particles.

doping in BaF₂ or a solar-blind PMT. Figs 14 and 15 show BaF₂ pulse shape measured by a PMT and a much-faster MCP-PMT. Fig. 16 shows y-ray induced damage in 20 cm long BaF₂ crystals saturates from 10 krad to 130 Mrad. Figs. 17 and 18 confirm the saturation damage in BaF₂ from protons and neutrons respectively. It is clear that BaF₂ plates of a few mm thick survive proton and neutron irradiation up to 9.7×10^{14} p/cm² and 8.3×10^{15} n_{eo}/cm², respectively.

3. Ultrafast Yttrium Doped BaF₂ Crystals

Acknowledgments: This work is supported by the U.S. Department of Energy, Office of High Energy Physics program under Award Number DE-SC0011925.

> Bright, fast and radiation hard inorganic scintillators are needed for future HEP experiments at the HL-LHC and FCC-hh. Our data show that mm thick plates of LYSO:Ce crystal and LuAG:Ce ceramics survive 10¹⁵ p/cm² and 10¹⁶ n_{eq}/cm², so are promising materials in severe radiation environment.

 \succ The RIN: γ and RIN:n experiments carried out for four LYSO+SiPM packages show the RIN:y and RIN:n values of about 34 keV under 200 rad/h and 7 keV under the neutron flux of 3.2×10^6 n_{eq}/cm²/s, which are negligible as compared to the 4.2 MeV MIP signal for the CMS BTL detector. The result also indicates that the radiation induced readout noise *in situ* is dominated by ionization dose.

> Undoped BaF₂ crystals provide ultrafast light with sub-ns decay time and a good radiation hardness up to 130 Mrad. Yttrium doping suppresses its slow light and promises an ultrafast inorganic scintillator with much reduced slow contamination. R&D is going for developing both yttrium doped BaF₂ and solarblind VUV photo-detectors for future HEP experiments, such as Mu2e-II.

Contact : zhu@hep.caltech.edu